Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let f(x) = 5- |x-2| and g(x) = |x + 1|, x ∈ R. If f(x) attains maximum value at α and g(x) attains minimum value at β, then displaystyle limx→-αβ ((x-1)(x2 -5x+6)/x2 - 6x + 8) is equal to :
Q. Let
f
(
x
)
=
5
−
∣
x
−
2∣
and
g
(
x
)
=
∣
x
+
1∣
,
x
∈
R. If
f
(
x
)
attains maximum value at
α
and
g
(
x
)
attains minimum value at
β
, then
x
→
−
α
β
lim
x
2
−
6
x
+
8
(
x
−
1
)
(
x
2
−
5
x
+
6
)
is equal to :
2183
201
JEE Main
JEE Main 2019
Limits and Derivatives
Report Error
A
1/2
25%
B
-3/2
25%
C
3/2
25%
D
-1/2
25%
Solution:
Maxima of
f
(
x
)
occured at
x
=
2
i.e.
α
=
2
Minima of g(x) occured at
x
=
−
1
i.e.
β
=
−
1
∴
lim
x
→
2
(
x
−
2
)
(
x
−
4
)
(
x
−
1
)
(
x
−
2
)
(
x
−
3
)
=
2
1