Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let f(x3 + y3)=xf(x2)+yf(y2) for all x,y∈ ℝ and v is differentiable. If f'(0)=5, then find value of f'(5)
Q. Let
f
(
x
3
+
y
3
)
=
x
f
(
x
2
)
+
y
f
(
y
2
)
for all
x
,
y
∈
R
and
v
is differentiable. If
f
′
(
0
)
=
5
,
then find value of
f
′
(
5
)
245
155
NTA Abhyas
NTA Abhyas 2022
Report Error
Answer:
5
Solution:
Let
f
(
x
3
+
y
3
)
=
x
f
(
x
2
)
+
y
f
(
y
2
)
for all
x
,
y
∈
R
and
f
(
x
)
is differentiable.
If
f
′
(
0
)
=
5
,
then find value of
f
′
(
5
)
x
=
y
=
0
⇒
f
(
0
)
=
0
y
=
0
⇒
f
(
x
3
)
=
x
f
(
x
2
)
⇒
f
(
x
)
=
c
x
for some constant
C
So,
f
′
(
x
)
=
C
⇒
f
′
(
0
)
=
f
′
(
5
)
=
5