Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let f(x)=2 x3-3 x2-x+(3/2) and ∫ limits(1/8)(7/8) f(f(x)) d x=(m/n) (where m, n are relative prime) then value of (m+n) is equal to
Q. Let
f
(
x
)
=
2
x
3
−
3
x
2
−
x
+
2
3
and
8
1
∫
8
7
f
(
f
(
x
))
d
x
=
n
m
(where
m
,
n
are relative prime) then value of
(
m
+
n
)
is equal to
110
141
JEE Advanced
JEE Advanced 2019
Report Error
Answer:
11.00
Solution:
f
(
x
)
=
x
3
+
(
x
−
1
)
3
−
4
x
+
2
5
f
(
1
−
x
)
=
(
1
−
x
)
3
+
(
−
x
)
3
−
4
(
1
−
x
)
+
2
5
⇒
f
(
x
)
+
f
(
1
−
x
)
=
1
Let
I
=
8
1
∫
8
7
f
(
f
(
x
))
d
x
Apply king property
I
=
8
1
∫
8
7
f
(
1
−
f
(
x
))
d
x
Adding (1) and (2)
2
I
=
8
1
∫
8
7
f
(
f
(
x
))
d
x
+
8
1
∫
8
7
f
(
1
−
f
(
x
))
d
x
2
I
=
8
1
∫
8
7
dx
=
4
3
⇒
I
=
8
3
m
=
3
n
=
8
m
+
n
=
11