Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let f(x)=2 x2-x-1 and S= n ∈ Z :|f(n)| ≤ 800 . Then, the value of displaystyle ∑n ∈ S f(n) is equal to
Q. Let
f
(
x
)
=
2
x
2
−
x
−
1
and
S
=
{
n
∈
Z
:
∣
f
(
n
)
∣
≤
800
}
. Then, the value of
n
∈
S
∑
f
(
n
)
is equal to _____
395
2
JEE Main
JEE Main 2022
Sequences and Series
Report Error
Answer:
10620
Solution:
f
(
x
)
=
2
x
2
−
x
−
1
∣
f
(
x
)
∣
≤
800
2
n
2
−
n
−
801
≤
0
n
2
−
2
1
n
−
2
801
≤
0
(
n
−
4
1
)
2
−
2
801
−
16
1
≤
0
(
n
−
4
1
)
2
−
16
6409
≤
0
(
n
−
4
1
−
4
6409
)
(
n
−
4
1
+
16
6409
)
≤
0
4
1
−
6409
≤
n
≤
4
1
+
6409
n
=
{
−
19
,
−
18
−
17
,
……
..0
,
1
,
2
,
……
,
20
}
n
∈
S
∑
f
(
x
)
=
∑
(
2
x
2
−
x
−
1
)
=
2
[
1
9
2
+
1
8
2
+
…
..
+
1
2
+
1
2
+
2
2
+
…
.
+
1
9
2
+
2
0
2
]
=
4
[
1
2
+
2
2
+
…
.
+
1
9
2
]
+
2
[
2
0
2
]
−
20
−
40
=
6
4
×
19
×
20
×
(
2
×
19
+
1
)
+
2
×
400
−
60
=
6
4
×
19
×
20
×
39
+
800
−
60
−
9880
+
800
−
60
=
10620