Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let f(x)=|2 cos x 1 0 1 2 cos x 1 0 1 2 cos x| then
Q. Let
f
(
x
)
=
∣
∣
2
cos
x
1
0
1
2
cos
x
1
0
1
2
cos
x
∣
∣
then
116
123
Determinants
Report Error
A
f
(
3
π
)
=
1
B
f
′
(
3
π
)
=
−
3
C
f
(
2
π
)
=
−
1
D
none of these
Solution:
Expanding along
C
1
, we get
f
(
x
)
=
2
cos
x
∣
∣
2
cos
x
1
1
2
cos
x
∣
∣
−
∣
∣
1
1
0
2
cos
x
∣
∣
=
8
cos
3
x
−
4
cos
x
=
4
cos
x
cos
2
x
⇒
f
(
3
π
)
=
−
1
,
f
(
2
π
)
=
0
f
′
(
x
)
=
−
4
[
sin
x
cos
2
x
+
2
cos
x
sin
2
x
]
=
−
4
[
sin
3
x
+
cos
x
sin
2
x
]
⇒
f
′
(
3
π
)
=
−
4
[
sin
π
+
cos
(
3
π
)
sin
(
3
2
π
)
]
=
−
3