Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let f(x)=12((e3 x-3 ex/e2 x-1)) be defined for x>0 and g(x) be the inverse of f(x) If ∫ limits827 g(x) d x=a ln 3-b ln 2-c, then the value of a-(b +c) is
Q. Let
f
(
x
)
=
12
(
e
2
x
−
1
e
3
x
−
3
e
x
)
be defined for
x
>
0
and
g
(
x
)
be the inverse of
f
(
x
)
If
8
∫
27
g
(
x
)
d
x
=
a
ln
3
−
b
ln
2
−
c
, then the value of
a
−
(
b
+
c
)
is
4455
144
Integrals
Report Error
Answer:
7
Solution:
l
n
2
∫
l
n
3
f
(
x
)
d
x
+
8
∫
27
g
(
y
)
d
y
=
27
ln
3
−
8
ln
2
and
l
n
2
∫
l
n
3
f
(
x
)
d
x
=
12
−
12
ln
3
+
12
ln
2
∴
8
∫
27
g
(
y
)
d
y
=
39
ln
3
−
20
ln
2
−
12
Hence,
a
=
39
;
b
=
20
;
c
=
12
∴
a
−
(
b
+
c
)
=
39
−
32
=
7.