fog=f(g(x))=f(1−∣x∣) =−1+∣1−∣x∣−2∣ −1+∣−∣x∣−1∣=−1+∣x∣∣+1∣
Let fog=y ∴y=−1∣x∣∣+1∣ ⇒y==⎩⎨⎧−1+x+1,−1−x+1,x≥0 x<0 ⇒y=⎩⎨⎧x,−x,x≥0 x<0 LHL at (x=0)=x→0lim(−x)=0 RHL at (x=0)=x→0lim(−x)=0
When x=0, then y=0
Hence, LHL at (x=0)=RHL at (x=0)= value of y at (x=0)
Hence y is continuous at x=0.
Clearly at all other point y continuous. Therefore, the set of all points where fog is discontinuous is an empty set.