Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let f(x)= (1- tan x /4x -π) , x ≠ (π/4), x ∈[0, (π/2)] . If f(x) is continuous in [0, (π/2)] , then f ( (π/4) ) is
Q. Let
f
(
x
)
=
4
x
−
π
1
−
t
a
n
x
,
x
=
4
π
,
x
∈
[
0
,
2
π
]
.
If
f
(
x
)
is continuous in
[
0
,
2
π
]
, then
f
(
4
π
)
is
5700
197
Continuity and Differentiability
Report Error
A
-1
9%
B
2
1
28%
C
−
2
1
54%
D
1
9%
Solution:
f
(
x
)
=
4
x
−
π
1
−
t
a
n
x
is continuous in
[
0
,
2
π
]
∴
f
(
4
π
)
=
x
→
4
π
lim
f
(
x
)
=
x
→
4
π
+
l
i
m
f
(
x
)
=
h
→
0
lim
f
(
4
π
+
h
)
=
h
→
0
lim
4
(
4
π
+
h
)
−
π
1
−
tan
(
4
π
+
h
)
,
h
>
0
=
h
→
0
lim
4
h
1
−
1
−
t
a
n
h
1
+
t
a
n
h
=
h
→
0
lim
1
−
tan
h
−
2
.
4
h
tan
h
=
4
−
2
=
−
2
1