Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let f(x)= begincases((1+ tan x)(1/x)-e/x), text if x ≠ 0 k, text if x=0 endcases If f ( x ) is continuous at x=0, then the value of k is
Q. Let
f
(
x
)
=
{
x
(
1
+
t
a
n
x
)
x
1
−
e
,
k
,
if
x
=
0
if
x
=
0
If
f
(
x
)
is continuous at
x
=
0
, then the value of
k
is
721
164
Report Error
A
e
B
2
−
e
C
4
−
e
D
None
Solution:
k
=
e
x
→
0
Lim
x
e
x
l
n
(
1
+
t
a
n
x
)
−
1
−
1
=
e
x
→
0
Lim
x
2
l
n
(
1
+
t
a
n
x
)
−
x
k
=
e
x
→
0
Lim
x
2
t
a
n
x
−
2
t
a
n
2
x
+
………
−
x
=
2
−
e
.