Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let f(.x.)=[(1/c o s . x . )] and g(.x.)=2x2-3x(.k+1.)+k(.3k+1.) (where [.x]. .x. denote the greatest integer and fractional part function respectively) are two real valued function. If g(.f(.x.).) < 0, ∀ x∈ R , then the number of integral value of k is :
Q. Let
f
(
x
)
=
[
cos
{
x
}
1
]
and
g
(
x
)
=
2
x
2
−
3
x
(
k
+
1
)
+
k
(
3
k
+
1
)
(where
[
x
]
&
{
x
}
denote the greatest integer and fractional part function respectively) are two real valued function. If
g
(
f
(
x
)
)
<
0
,
∀
x
∈
R
, then the number of integral value of
k
is :
637
153
NTA Abhyas
NTA Abhyas 2022
Report Error
Answer:
1
Solution:
∵
f
(
x
)
=
[
c
o
s
{
x
}
1
]
=
1
∴
g
(
f
(
x
))
=
g
(
1
)
<
0
⇒
2
−
3
(
k
+
1
)
+
k
(
3
k
+
1
)
<
0
3
k
2
−
2
k
−
1
<
0
⇒
k
∈
(
−
3
1
,
1
)
∴
The integral value of
k
is
0