Q. Let $f\left(\right.x\left.\right)=\left[\frac{1}{c o s \left\{\right. x \left.\right\}}\right]$ and $g\left(\right.x\left.\right)=2x^{2}-3x\left(\right.k+1\left.\right)+k\left(\right.3k+1\left.\right)$ (where $\left[\right.x\left]\right.\&\left\{\right.x\left.\right\}$ denote the greatest integer and fractional part function respectively) are two real valued function. If $g\left(\right.f\left(\right.x\left.\right)\left.\right) < 0,$ $\forall x\in R$ , then the number of integral value of $k$ is :
NTA AbhyasNTA Abhyas 2022
Solution: