Q.
Let f(x)=1+3x2+5x4+7x6+……+21⋅x20,x∈R and g(x)=−x2+4cos2θ−4sinθ−7,θ∈R If d is the shortest distance between f(x)&g(x) and d1,d2 are the least and greatest value of d respectively, then find (d1d2).
f(x)=1+3x2+5x4+7x6+……+21x20,x∈R g(x)=−x2+4cos2θ−4sinθ−7,θ∈R f(x)∣min=1,g(x)∣max=4cos2θ−4sinθ−7 at x=0 shortest distance between f(x) and g(x) is d=1−(4cos2θ−4sinθ−7) =1−(4−4sin2θ−4sinθ−7) =4sin2θ+4sinθ+4 =(2sinθ+1)2+3 d1=3,d2=12 ∴d1d2=4