Q. Let $f ( x )=1+3 x ^2+5 x ^4+7 x ^6+\ldots \ldots+21 \cdot x ^{20}, x \in R$ and $g(x)=-x^2+4 \cos ^2 \theta-4 \sin \theta-7, \theta \in R$ If $d$ is the shortest distance between $f ( x ) \& g ( x )$ and $d _1, d _2$ are the least and greatest value of $d$ respectively, then find $\left(\frac{ d _2}{ d _1}\right)$.
Application of Derivatives
Solution: