f(x)=21−tan(2πx),−1<x<1 g(x)=3+4x−4x2 =4−(2x−1)2
Domain of f(x)⇒2πx=(2n+1)2π x=2n+1
Domain ⇒x∈(−1,1)
Domain of g(x)⇒4−(2x−1)2≥0 ⇒(2x−1)2≤4 ⇒−2≤2x−1≤2 ⇒−21≤x≤23
Domain of g(x)⇒x∈[−21,23]
Domain of f(x)+g(x) will be x∈(−1,1)∩x∈[−21,23] ⇒x∈[−21,1)