f(x) is increasing
(discussed in class) g(x)=(1+x1)x+1>0 =e(x+1)[lnxx+1] g′(x)=(1+x1)x+1[(x+1)(x+11−x1)+ln(xx+1)] =(1+x1)x+1[ln(xx+1)+1−xx+1] let xx+1=u; for x>0,u∈(1,∞) consider h(u)=lnu+1−u h′(u)=u1−1<0 in (1,∞) hence h(u) is a decreasing function in (1,∞) h (u) < h (1) h(u)<0 [but h(1)=0 ] ∴g′(x)<0⇒ gis decreasing ∴ fis increasing and g is decreasing ⇒(B)