Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let f (θ)= sin θ+∫ limits-π / 2π / 2( sin θ+ t cos θ) f ( t ) dt. Then the value of |∫ limits0π / 2 f(θ) d θ| is
Q. Let
f
(
θ
)
=
sin
θ
+
−
π
/2
∫
π
/2
(
sin
θ
+
t
cos
θ
)
f
(
t
)
d
t
. Then the value of
∣
∣
0
∫
π
/2
f
(
θ
)
d
θ
∣
∣
is ___
1565
122
JEE Main
JEE Main 2022
Integrals
Report Error
Answer:
1
Solution:
f
(
θ
)
=
sin
θ
+
−
π
/2
∫
π
/2
(
sin
θ
+
t
cos
θ
)
f
(
t
)
d
t
f
(
θ
)
=
sin
θ
+
sin
θ
−
π
/2
∫
π
/2
f
(
t
)
d
t
+
cos
θ
−
π
/2
∫
π
/2
t
f
(
t
)
d
t
Let
A
=
−
π
/2
∫
π
/2
f
(
t
)
d
t
,
B
=
−
π
/2
∫
π
/2
t
f
(
t
)
d
t
f
(
θ
)
=
sin
θ
+
A
sin
θ
+
B
cos
θ
f
(
θ
)
=
(
A
+
1
)
sin
θ
+
B
cos
θ
A
=
−
π
/2
∫
π
/2
(
A
+
1
)
sin
t
+
B
cos
t
d
t
A
=
2
B
……
(
1
)
B
=
−
π
/2
∫
π
/2
t
((
A
+
1
)
sin
t
+
B
cos
t
)
B
=
−
π
/2
∫
π
/2
t
(
A
+
1
)
sin
t
B
=
(
A
+
1
)
2
0
∫
π
/2
t
sin
t
d
t
B
=
(
A
+
1
)
2.1
2
A
+
2
−
B
=
0
……
(
2
)
After solving
B
=
−
3
2
,
A
=
−
3
4
∣
∣
0
∫
π
/2
f
(
θ
)
d
θ
∣
∣
=
∣
∣
0
∫
π
/2
−
3
1
sin
θ
−
3
2
cos
θ
∣
∣
=
1