Using C1→C1+C3, we get f(θ)=∣∣0−(sinθ+cosθ)0cosθ1sinθ−1−cosθ1∣∣
Evaluating along C1, we get f(θ)=(sinθ+cosθ)∣∣cosθsinθ−11∣∣ =(sinθ+cosθ)2 =[2(21sinθ+21cosθ)]2 =2sin2(4π+θ)
As 0≤sin2(4π+θ)≤1, we get 0≤f(θ)≤2 A=2 for θ=4π B=0 for θ=−4π
As 0≤sin2(4π+θ)≤1, we get
and B=0 for θ=−4π
Thus, (A,B)=(2,0)