Q.
Let f:S→S where S=(0,∞) be a twice differentiable function such that f(x+1)=xf(x) If g:S→R be defined as g(x)=logef(x), then the value of ∣g "(5) −g"(1)∣ is equal to :
lnf(x+1)=ln(xf(x)) lnf(x+1)=lnx+lnf(x) ⇒g(x+1)=lnx+g(x) ⇒g(x+1)−g(x)=lnx ⇒g′′(x+1)−g′′(x)=−x21
Put x=1,2,3,4 g′′(2)−g′′(1)=−121…(1) g′′(3)−gn(2)=−221…(2) g′′(4)−g′′(3)=−321…(3) g′′(5)−g′′(4)=−421…(4)
Add all the equation we get g′′(5)−g′′(1)=−121−221−321−421 ∣g′′(5)−g′′(1)∣−144205