Q.
Let f:R→R,g:R→R and h:R→R be differential functions such that f(x)=x3+3x+2,g(f(x))=x & h(g(g(x)))=x∀x∈R, then which of the following is true?
1553
224
Relations and Functions - Part 2
Report Error
Solution:
Given f(x)=x3+3x+2,g(f(x))=x & h(g(g(x)))=x ∴f′(x)=3x2+3 ∴f′(0)=3
and f(x)=x3+3x+2 ∴g(0)=2
Again g(f(x))=x ∴g′(f(x))f′(x)=1 g′(f(x))=f′(x)1.....(∗) ∴ For g′(2), we need to solve f(x)=2 ⇒x=0 ⇒g′(2)=g(f(0))=f′(0)1=31
Also, h(g(g(x)))=x, on differentiating w. r to x we get ∴h′(g(g(x))).g′(g(x)).g′(x)=1 ⇒h′(g(g(x)))=g′(g(x))g′(x)1
Now for h′(1) we need to solve g(g(x))=1 ⇒g(x)=g′(1) but g(s(x))=x ⇒g−1(x)=f(x) ⇒g−1(1)=f(1),g−1(6)=f(6)=236 ⇒g(x)=g−1(1)=f(1)=13+3(1)+2=6
Now, h′(g(g(x)))=g′(g(x))g′(x)1=g′(6)g′(236)1 =(f′(x))x=11×(f′(x))x=611 (using ∗) ∴h′(1)=61×11111=666 (As f(x)=x3+3x+2,f′(x)=3x2+3, f′(1) & f′(6) are 6 & 111 respectively)
where x=1,x=6 are solutions of the equations x3+3x+2=6 & x3+3x+2=236
i.e., solutions of the equations x3+3x−4=0 & x3+3x−234=0
For the value of h(0) we need to solve g(g(x))=0 ⇒g(x)=g−1(0)=f(0)=2 thus x=g−1(2)=f(2)=16 ∴h(0)=h(g(g(x))) (at g(g(x))=0)=16
Again, h(g(g(x)))=x, replacing x by f(x) ⇒h(g(g(f(x))))=f(x) ⇒h(g(x))=f(x) using g(f(x))=x ∴h(g(4))=f(4)= value of (x3+3x+2)x=4 =64+12+2=78