Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let f:R arrow R,f(x)=x4-8x3+22x2-24x+c. If sum of all local extremum values of f(x) is 1, then c is equal to
Q. Let
f
:
R
→
R
,
f
(
x
)
=
x
4
−
8
x
3
+
22
x
2
−
24
x
+
c
.
If sum of all local extremum values of
f
(
x
)
is
1
,
then
c
is equal to
2601
222
NTA Abhyas
NTA Abhyas 2020
Application of Derivatives
Report Error
A
8
0%
B
9
50%
C
10
50%
D
11
0%
Solution:
f
′
(
x
)
=
4
(
x
3
−
6
x
2
+
11
x
−
6
)
=
4
(
x
−
1
)
(
x
−
2
)
(
x
−
3
)
Hence,
x
=
1
,
2
,
3
are points of extrema
So,
f
(
1
)
+
f
(
2
)
+
f
(
3
)
=
1
(
c
−
9
)
+
(
c
−
8
)
+
(
c
−
9
)
=
1
⇒
c
=
9