Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let f: R arrow R defined as f(x)=(x/2)+( sin 2 x/4)-(2-c) sin x-2 c x is strictly increasing on R, then the largest integral value of c is equal to
Q. Let
f
:
R
→
R
defined as
f
(
x
)
=
2
x
+
4
s
i
n
2
x
−
(
2
−
c
)
sin
x
−
2
c
x
is strictly increasing on
R
, then the largest integral value of
c
is equal to
304
96
Application of Derivatives
Report Error
A
0
B
1
C
-1
D
-2
Solution:
Θ
f
(
x
)
=
2
x
+
4
s
i
n
2
x
−
(
2
−
c
)
sin
x
−
2
c
x
f
′
(
x
)
=
2
1
+
2
c
o
s
2
x
−
(
2
−
c
)
cos
x
−
2
c
f
′
(
x
)
=
cos
2
x
+
(
c
−
2
)
cos
x
−
2
c
⇒
f
′
(
x
)
=
(
cos
x
+
c
)
(
cos
x
−
2
)
≥
0
⇒
cos
x
+
c
≤
0
⇒
c
+
1
≤
0
⇒
c
≤
−
1