Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let f: R arrow R be defined as f(x+y)+f(x-y)=2 f(x) f(y), f((1/2))=-1. Then the value of displaystyle∑k=120 (1/ sin (k) sin (k+f(k))) is equal to:
Q. Let
f
:
R
→
R
be defined as
f
(
x
+
y
)
+
f
(
x
−
y
)
=
2
f
(
x
)
f
(
y
)
,
f
(
2
1
)
=
−
1
. Then the value of
k
=
1
∑
20
sin
(
k
)
sin
(
k
+
f
(
k
))
1
is equal to:
1659
138
JEE Main
JEE Main 2021
Sequences and Series
Report Error
A
cosec
2
(
21
)
cos
(
20
)
cos
B
sec
2
(
1
)
sec
(
21
)
cos
(
20
)
C
cosec
2
(
1
)
cosec
(
21
)
sin
(
20
)
D
sec
2
(
21
)
sin
(
20
)
sin
(
2
)
Solution:
f
(
x
)
=
cos
λ
x
∵
f
(
2
1
)
=
−
1
So,
−
1
=
cos
2
λ
⇒
λ
=
2
π
Thus
f
(
x
)
=
cos
2
π
x
Thus
f
(
x
)
=
cos
2
π
x
Now
k
is natural number
Thus
f
(
k
)
=
1
k
=
1
∑
20
sin
k
sin
(
k
+
1
)
1
=
sin
1
1
k
=
1
∑
20
[
sin
k
⋅
sin
(
k
+
1
)
sin
((
k
+
1
)
−
k
)
]
=
s
i
n
1
1
k
=
1
∑
20
(
cot
k
−
cot
(
k
+
1
)
=
s
i
n
1
c
o
t
1
−
c
o
t
21
=
cosec
2
1
cosec
(
21
)
⋅
sin
20