Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let f: R arrow R be defined as f ( x )= x 3+ x -5. If g(x) is a function such that f(g(x))=x, ∀ x ∈ R, then g prime(63) is equal to .
Q. Let
f
:
R
→
R
be defined as
f
(
x
)
=
x
3
+
x
−
5
. If
g
(
x
)
is a function such that
f
(
g
(
x
))
=
x
,
∀
x
∈
R
, then
g
′
(
63
)
is equal to ______.
884
151
JEE Main
JEE Main 2022
Continuity and Differentiability
Report Error
A
49
1
0%
B
49
3
0%
C
49
43
100%
D
49
91
0%
Solution:
f
(
x
)
=
x
3
+
x
−
5
⇒
f
′
(
x
)
=
3
x
2
+
1
⇒
increasing function
⇒
invertible
⇒
g
(
x
)
is inverse of
f
(
x
)
⇒
g
(
f
(
x
))
=
x
⇒
g
′
(
f
(
x
))
f
′
(
x
)
=
1
⇒
f
(
x
)
=
63
⇒
x
3
+
x
−
5
=
63
⇒
x
=
4
put
x
=
4
g
′
(
f
(
4
))
f
′
(
4
)
=
1
g
′
(
63
)
×
49
=
1
{
f
′
(
4
)
=
49
}
g
′
(
63
)
=
49
1