Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let f: R arrow R be defined as f ( x )=(2 x -3 π)3+(4/3) x + cos x and g = f -1, then
Q. Let
f
:
R
→
R
be defined as
f
(
x
)
=
(
2
x
−
3
π
)
3
+
3
4
x
+
cos
x
and
g
=
f
−
1
, then
427
101
Continuity and Differentiability
Report Error
A
g
′
(
2
π
)
=
7
3
B
g
′
(
2
π
)
=
3
7
C
g
′′
(
2
π
)
=
0
D
g
′′
(
2
π
)
=
343
−
27
Solution:
Now,
g
′
(
2
π
)
=
f
′
(
2
3
π
)
1
=
3
7
1
=
7
3
f
′
(
x
)
=
2
×
3
(
2
x
−
3
π
)
2
+
3
4
−
sin
x
∴
f
′
(
2
3
π
)
=
3
4
+
1
=
3
7
Also,
g
′′
(
2
π
)
=
(
f
′
(
2
3
π
)
)
3
−
f
′′
(
2
3
π
)
=
0
f
′′
(
x
)
=
12
×
2
(
2
x
−
3
π
)
+
0
−
cos
x
∴
f
′′
(
2
3
π
)
=
0