f(x)=x3+x2f′(1)+xf′′(2)+f′′′(3) ⇒ƒ′(x)=3x2+2xƒ′(1)+ƒ′′(x) .....(1) ⇒ƒ′′(x)=6x+2ƒ′(1).....(2) ⇒ƒ′′′(x)=6 .....(3)
put x = 1 in equation (1) : ƒ′(1)=3+2ƒ′(1)+ƒ′′(2) .....(4)
put x = 2 in equation (2) : ƒ′′(2)=12+2ƒ′(1) .....(5)
from equation (4) & (5) : −3−ƒ′(1)=12+2ƒ′(1) ⇒3ƒ′(1)=−15 ⇒ƒ′(1)=−5Þƒ′′(2)=2 ....(2)
put x=3 in equation (3) : ƒ′′′(3)=6 ∴ƒ(x)=x3−5x2+2x+6 ƒ(2)=8−20+4+6=−2