Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let f:R arrow R be a function defined by f(x)=-x3-3x2-6x+1. Number of integers in the solution set of x satisfying the inequality f(f (x3 + f (x)) ge f(f (- f (x) - x3))) is
Q. Let
f
:
R
→
R
be a function defined by
f
(
x
)
=
−
x
3
−
3
x
2
−
6
x
+
1.
Number of integers in the solution set of
x
satisfying the inequality
f
(
f
(
x
3
+
f
(
x
)
)
≥
f
(
f
(
−
f
(
x
)
−
x
3
)
)
)
is
3367
155
NTA Abhyas
NTA Abhyas 2022
Report Error
A
3
B
4
C
5
D
6
Solution:
f
′
(
x
)
<
0
∴
f
(
x
3
+
f
(
x
)
≤
f
(
−
f
(
x
)
−
x
3
)
)
⇒
x
3
+
f
(
x
)
≥
−
f
(
x
)
−
x
3
⇒
f
(
x
)
+
x
3
≥
0
⇒
3
x
2
+
6
x
−
1
≤
0
As
x
∈
Z
,
x
∈
{
−
2
,
−
1
,
0
}