Q.
Let f :R → R be a function defined by f(x)=ex+e−xe∣x∣−e−x. Then
3378
222
Relations and Functions - Part 2
Report Error
Solution:
We have, If x < 0 |x| = -x ∴f(x)=ex+e−xe−x−e−x=0 ∴f(x)=0∀x<0 ∴f(x) is not one-one
Next if x≥0,∣x∣=x ∴f(x)=ex+e−xex−e−x
Let y=ex+e−xex−e−x⇒y=e2x+1e2x−1 ∴e2x=1−y1+y
For x≥0,e2x≥1 ∴1−y1+y≥1⇒1−y2y≥0 ⇒y(y−1)≤0,y=1⇒0≤y<1 ∴ Range of f(x) = [0 1) ∴ f(x) is not onto