Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let f: R arrow R be a function defined as f ( x )= e x 2( e x 3+ x +1- e - x 3- x -3)+2 x +5 and g is the inverse function of f, then
Q. Let
f
:
R
→
R
be a function defined as
f
(
x
)
=
e
x
2
(
e
x
3
+
x
+
1
−
e
−
x
3
−
x
−
3
)
+
2
x
+
5
and
g
is the inverse function of
f
, then
337
130
Continuity and Differentiability
Report Error
A
d
x
d
(
x
f
(
g
(
x
)))
∣
x
=
5
=
10
B
d
x
d
(
g
(
x
))
∣
x
=
3
=
10
1
C
d
x
d
(
g
(
x
)
x
)
∣
∣
x
=
3
=
−
31
D
d
x
d
(
x
2
g
(
f
(
x
)))
)
∣
∣
x
=
e
=
1
Solution:
f
(
x
)
=
e
x
3
+
x
2
+
x
+
1
−
e
−
x
3
+
x
2
−
x
−
3
+
2
x
+
5
f
(
−
1
)
=
3
f
′
(
x
)
=
e
x
3
+
x
2
+
x
+
1
(
3
x
2
+
2
x
+
1
)
−
e
−
x
3
+
x
2
−
x
−
3
(
−
3
x
2
+
2
x
−
1
)
+
2
f
′
(
−
1
)
=
3
−
2
+
1
−
(
−
3
−
2
−
1
)
+
2
=
10
Now, verify the options.