Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let f: R arrow R be a differentiable function such that f prime(x)+f(x)=∫ limits02 f(t) d t. If f(0)=e-2, then 2 f(0)-f(2) is equal to
Q. Let
f
:
R
→
R
be a differentiable function such that
f
′
(
x
)
+
f
(
x
)
=
0
∫
2
f
(
t
)
d
t
. If
f
(
0
)
=
e
−
2
, then
2
f
(
0
)
−
f
(
2
)
is equal to_____
145
134
JEE Main
JEE Main 2023
Differential Equations
Report Error
Answer:
1
Solution:
d
x
d
y
+
y
=
k
y
⋅
e
x
=
k
⋅
e
x
+
c
f
(
0
)
=
e
−
2
⇒
c
=
e
−
2
−
k
∴
y
=
k
+
(
e
−
2
−
k
)
e
−
x
now
k
=
0
∫
2
(
k
+
(
e
−
2
−
k
)
e
−
x
)
d
x
⇒
k
=
e
−
2
−
1
∴
y
=
(
e
−
2
−
1
)
+
e
−
x
f
(
2
)
=
2
e
−
2
−
1
,
f
(
0
)
=
e
−
2
2
f
(
0
)
−
f
(
2
)
=
1