Q.
Let f:R→R be a differentiable function satisfying f(x)=x2+30∫x31e−t3t2⋅f(x−t3)dt.
The value of determinant ∣∣f(0)(f(−3)−9)(f(−5)−25)(f(3)−9)f(0)(f(−7)−49)(f(5)−25)(f(7)−49)f(0)∣∣ is equal to
f(x)=x2+30∫x31e−t3t2f(x−t3)dt
Put x−t3=λ in second term of R.H.S and simplify it, f(x)=x2+e−x0∫xeλf(λ)dλ
Finally, f(x)=(3x3+x2)
It is skew symmetric determinant i.e. ∣∣0−93−125903−7331253730∣∣=0