Q.
Let $f: R \rightarrow R$ be a differentiable function satisfying $f(x)=x^2+3 \int\limits_0^{x^{\frac{1}{3}}} e^{-t^3} t^2 \cdot f\left(x-t^3\right) d t$.
The value of determinant $\begin{vmatrix} f (0) & ( f (3)-9) & ( f (5)-25) \\ ( f (-3)-9) & f (0) & ( f (7)-49) \\ ( f (-5)-25) & ( f (-7)-49) & f (0)\end{vmatrix}$ is equal to
Application of Integrals
Solution: