I=x→0lim(1+f(2−x)−f(2)1−f(3+x)−f(3))x1[1∞ form] ⇒I=eI1, where I1=x→0lim((1+f(2−x)−f(2)1−f(3+x)−f(3)−1))(x1) =x→0lim(x1)(1+f(2−x)−f(2)f(3+x)−f(3)−f(2−x)+f(2)) (00 form )
By L. Hospital Rule, I1=x→0lim(1f′(3+x)+f′(2−x))x→0lim(1+f(2−x)−f(2)1) =f′(3)+f′(2)=0 ⇒I=eI1=e0=1