Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let f: R → R be a differentiable function satisfying f '(3) + f'(2) = 0. Then displaystyle limx→0 ((1+f(3+x)-f(3)/1+f(2-x)-f(2)))(1/x) is equal to
Q. Let
f
:
R
→
R
be a differentiable function satisfying
f
′
(
3
)
+
f
′
(
2
)
=
0
.
Then
x
→
0
lim
(
1
+
f
(
2
−
x
)
−
f
(
2
)
1
+
f
(
3
+
x
)
−
f
(
3
)
)
x
1
is equal to
3514
220
JEE Main
JEE Main 2019
Limits and Derivatives
Report Error
A
e
2
8%
B
e
18%
C
e
−
1
18%
D
1
57%
Solution:
lim
x
→
0
(
1
+
f
(
2
−
x
)
−
f
(
2
)
1
+
f
(
3
+
x
)
−
f
(
3
)
)
x
1
(
1
∞
)
⇒
e
l
i
m
x
→
0
x
(
1
+
f
(
2
−
x
)
−
f
(
2
)
)
f
(
3
+
x
)
−
f
(
2
−
x
)
−
f
(
3
)
+
f
(
2
)
⇒
e
l
i
m
x
→
0
f
′
(
2
−
x
)
+
(
1
+
f
(
2
−
x
)
−
f
(
2
)
)
f
;
(
3
+
x
)
+
f
′
(
2
−
x
)
⇒
e
1
f
′
(
3
)
+
f
′
(
2
)
=
1