Q.
Let f:R→R and g:R→R be functions satisfying f(x+y)=f(x)+f(y)+f(x)f(y) and f(x)=xg(x)
for all x,y∈R. If x→0limg(x)=1, then which of the following statements is/are TRUE?
f(x)=x⋅g(x)∀x∈R ⇒x→0limf(x)=(x→0limx)(x→0limg(x)) ⇒x→0limf(x)=0
Also x→0lim(f(x+y))=x→0lim(f(x)+f(y)+f(x)⋅f(y)) ⇒x→0limf(x+y)=f(y) ⇒f(x) is continuous ∀x∈R ⇒f(0)=0 f′(x)=h→0limhf(x+h)−f(x) ⇒f′(x)=h→0limhf(h)+f(x)⋅f(h) ⇒f′(x)=h→0limhf(h)⋅(1+f(x)) ⇒∫1+f(x)f′(x)dx=∫1dx ⇒ln∣1+f(x)∣=x+c f(0)=0⇒c=0 ⇒f(x)=ex−1 ⇒f′(x)=ex ⇒f(x) is differentiable and f′(0)=1
Also g(x)=xf(x),x=0
Now if g(0)=1 ⇒g(x)={xex−1,1,x=0x=0 ⇒g(x) is continuous at x=0 ⇒g′(0)=h→0limhg(0+h)−g(0) =h→0limhheh−1−1=21 ⇒g(x) is diff. ∀x∈R if g(0)=1