Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let f: R arrow((-π/2), 0] be a function defined by f ( x )= tan -1(2 x - x 2+λ). If f is onto, then λ lies in the interval
Q. Let
f
:
R
→
(
2
−
π
,
0
]
be a function defined by
f
(
x
)
=
tan
−
1
(
2
x
−
x
2
+
λ
)
. If
f
is onto, then
λ
lies in the interval
1379
132
Inverse Trigonometric Functions
Report Error
A
(
−
2
,
0
)
B
(
0
,
2
)
C
(
−
1
,
1
)
D
none
Solution:
∵
f
is onto
∴
Range of
tan
−
1
(
2
x
−
x
2
+
λ
)
should be
(
2
−
π
,
0
]
⇒
Range of
2
x
−
x
2
+
λ
should be
(
−
∞
,
0
]
; hence
D
=
0
⇒
4
+
4
λ
=
0
, hence
λ
=
−
1