gof(x)=sin−1(4f(x)) is defined ∀x∈[−1,1] ⇒−1≤4f(x)≤1∀x∈[−1,1] −4≤x2−3x+b≤4∀x∈[−1,1] fmin =f(+1)=b−2 fmax=f(−1)=b+4 ⇒b−2≥−4 and b+4≤4 b≥−2 and b≤0⇒b∈[−2,0] ∴b=−2,−1,0⇒P,Q,R
(C)f:R→[−8,∞),f(x)=x2+6x+b fmim=f(−3)=b−9 b−9=−8⇒b=1⇒S
(D)h(x)=f∘g(x)=(sin−14x)2+3sin−14x+2 h(t)=t2+3t+2,t=sin−14x,t∈[−2π,2π] =(t+23)2−41 h(t)∣max occurs when t=2π and h(t)∣min occurs when t=−23 ∴h(t)∣min=−41 and h(t)∣max=4π2+23π+2 ∴ Range of f∘g(x)=[−41,4π2+23π+2] ∴ Possible integers are 0,1⇒R,S ]