Q.
Let $f: R \rightarrow[\alpha, \infty), f( x )= x ^2+3 ax + b , g ( x )=\sin ^{-1} \frac{ x }{4}(\alpha \in R )$
Column I
Column II
A
The possible integral values of ' $a$ ' for which $f(x)$ is many one in interval $[-3,5]$ is/are
P
- 2
B
Let $a =-1$ and $\operatorname{gof}( x )$ is defined for $x \in[-1,1]$ then possible integral values of $b$ can be
Q
- 1
C
Let $a =2, \alpha=-8$ the value(s) of $b$ for which $f ( x )$ is surjective is/are
R
0
D
If $a=1, b=2$, then integers in the range of $f \circ g(x)$ is/are
S
1
Column I | Column II | ||
---|---|---|---|
A | The possible integral values of ' $a$ ' for which $f(x)$ is many one in interval $[-3,5]$ is/are | P | - 2 |
B | Let $a =-1$ and $\operatorname{gof}( x )$ is defined for $x \in[-1,1]$ then possible integral values of $b$ can be | Q | - 1 |
C | Let $a =2, \alpha=-8$ the value(s) of $b$ for which $f ( x )$ is surjective is/are | R | 0 |
D | If $a=1, b=2$, then integers in the range of $f \circ g(x)$ is/are | S | 1 |
Inverse Trigonometric Functions
Solution: