Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let f: R → 0, ∞ be such that displaystyle limx→5 f(x) exists and displaystyle limx→5 ((f(x))2-9/√|x-5|) = 0 Then displaystyle limx→5 f(x) equals :
Q. Let
f
:
R
→
0
,
∞
be such that
x
→
5
lim
f
(
x
)
exists and
x
→
5
lim
∣
x
−
5
∣
(
f
(
x
)
)
2
−
9
=
0
Then
x
→
5
lim
f
(
x
)
equals :
1700
208
AIEEE
AIEEE 2011
Limits and Derivatives
Report Error
A
0
22%
B
1
12%
C
2
7%
D
3
58%
Solution:
ℓ
i
m
x
→
5
∣
x
−
5
∣
(
f
(
x
)
2
)
−
9
=
0
ℓ
i
m
x
→
5
[
(
f
(
x
)
)
2
−
9
]
=
0
ℓ
i
m
x
→
5
f
(
x
)
=
3