f′(x)=2+sin4(πx)192x3∀x∈R;f(21)=0
Now 64x3≤f′(x)≤96x3∀x∈[21,1]
So 16x4−1≤f(x)≤24x4−23∀x∈[21,1] 516⋅3231−21≤∫y21f(x)dx≤524⋅3231−43 ⇒1026≤1/2∫1f(x)dx≤2078 hence (D)
(1) is incorrect as 1/2∫1f(x)dx≤2078
(2) is incorrect as 1/2∫1f(x)dx>1026
(3) is incorrect as y2∫1f(x)dx>0