Q. Let $f^{\prime}(x)=\frac{192 x^3}{2+\sin ^4 \pi x}$ for all $x \in R$ with $f\left(\frac{1}{2}\right)=0$. If $m \leq \int\limits_{1 / 2}^1 f(x) d x \leq M$, then the possible values of $m$ and $M$ are
Integrals
Solution: