Given, f(0)=9 and f(x)=sin2xsin(29x)
Now, f(−x)=sin(−2x)sin(−29x)=−sin(2x)−sin(29x)=f(x)
Hence, f(x) is an even function ∴I=π2−π∫πf(x)dx =π2×20∫πf(x)dx =π40∫πsin2xsin29xdx =π40∫πsin2xsin(4x+2x)dx =π40∫πsin2xsin4xcos2x+sin2xcos4xdx =π4[0∫π(sin4xcot2xdx)]+0 [∵0∫πcos4xdx=[4sin4x]0π=41(sin4π−sin)=41[0−0]=0]=−41[0−0]=0 ∴I=π40∫πsin4xcot2xdx…(i) =π40∫πsin(4π−4x)cot(2π−x)dx ⇒I=π40∫π−sin4xtan2xdx…(ii)
On adding Eqs. (i) and (ii), we get 2I=π4[0∫πsin4x(cot2x−tan2x)dx] =π4[0∫πsin4xsin2xcos2x(cos22x−sin22x)dx] =π4[0∫π21sinxsin4xcosxdx] =π8[0∫πsinx2sin2xcos2xcosxdx] =π16[0∫πsinx2sinxcosxcos2xcosxdx] =π320∫πcos2xcos2xdx =π320∫π(2cos2x+1)cos2xdx =π16[0∫πcos22xdx+0∫πcos2xdx] =π16[0∫π2cos4x+1dx+0∫πcos2xdx] =π16[21[4sin4x+x]0x+[2sin2x]0x] =π16[21[0+π−0−0]+[20−0]]=π16[2π] 2I⇒8 ⇒I=4