Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let f be any function defined on R and let it satisfy the condition: |f(x)-f(y)| ≤|(x-y)2|, ∀(x, y) ∈ R If f(0)=1, then :
Q. Let
f
be any function defined on
R
and let it satisfy the condition :
∣
f
(
x
)
−
f
(
y
)
∣
≤
∣
∣
(
x
−
y
)
2
∣
∣
,
∀
(
x
,
y
)
∈
R
If
f
(
0
)
=
1
, then :
2399
196
JEE Main
JEE Main 2021
Continuity and Differentiability
Report Error
A
f
(
x
)
can take any value in
R
35%
B
f
(
x
)
<
0
,
∀
x
∈
R
15%
C
f
(
x
)
=
0
,
∀
x
∈
R
23%
D
f
(
x
)
>
0
,
∀
x
∈
R
27%
Solution:
∣
∣
(
x
−
y
)
f
(
x
)
−
f
(
y
)
∣
∣
≤
∣
(
x
−
y
)
∣
x
−
y
=
h
let
⇒
x
=
y
+
h
x
→
0
lim
∣
∣
h
f
(
y
+
h
)
−
f
(
y
)
∣
∣
≤
0
⇒
∣
f
′
(
y
)
∣
≤
0
⇒
f
′
(
y
)
=
0
⇒
f
(
y
)
=
k
(constant)
and
f
(
0
)
=
1
given
So,
f
(
y
)
=
1
⇒
f
(
x
)
=
1