Q.
Let f be a twice differentiable function such that f′′(x)=−f(x) and f′(x)=g(x), h(x)=(f(x))2+(g(x))2. If h(17)=23, then find h(51).
523
172
Continuity and Differentiability
Report Error
Answer: 23
Solution:
h(x)=(f(x))2+(g(x))2
Differentiate with respect to x, we get h′(x)=2f(x)f′(x)+2g(x)g′(x) =2f(x)g(x)+2g(x)g′(x) =2f(x)g(x)+2g(x)(f′′(x)) =2f(x)g(x)−2f(x)g(x) =0 ⇒h is a constant function h(17)=23 ⇒h(x)=23, for all x ⇒h(51)=23