Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let f be a twice differentiable function on R. If f prime(0)=4 and f(x)+∫ limits0x(x-t) f prime(t) d t=(e2 x+e-2 x) cos 2 x+(2/a) x, then (2 a+1)5 a2 is equal to
Q. Let
f
be a twice differentiable function on
R
.
If
f
′
(
0
)
=
4
and
f
(
x
)
+
0
∫
x
(
x
−
t
)
f
′
(
t
)
d
t
=
(
e
2
x
+
e
−
2
x
)
cos
2
x
+
a
2
x
,
then
(
2
a
+
1
)
5
a
2
is equal to ______
699
127
JEE Main
JEE Main 2022
Continuity and Differentiability
Report Error
Answer:
8
Solution:
f
′
(
0
)
=
4
f
(
x
)
+
0
∫
x
(
x
−
t
)
f
′
(
t
)
d
t
=
(
e
2
x
+
e
−
2
x
)
cos
2
x
+
a
2
x
Put
x
=
0
:
f
(
0
)
=
2
f
′
(
x
)
+
x
(
f
′
(
x
)
)
+
0
∫
x
f
′
(
t
)
d
t
−
x
f
′
(
x
)
=
(
e
2
x
+
e
−
2
x
)
(
−
2
sin
2
x
)
+
cos
2
x
(
2
e
2
x
−
2
e
−
2
x
)
+
a
2
⇒
f
′
(
x
)
+
f
(
x
)
−
2
=
(
e
2
x
+
e
−
2
x
)
(
−
2
sin
2
x
)
+
cos
2
x
(
2
e
2
x
−
2
e
−
2
x
)
+
a
2
Put
x
=
0
4
+
2
−
2
=
0
+
(
2
−
2
)
+
2/
a
⇒
a
=
2
1
(
2
a
+
1
)
5
a
2
=
2
5
⋅
2
2
1
=
8