Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let f be a twice differentiable function on (1,6) . If f (2)=8, f'(2)=5, f prime( x ) ≥ 1 and f''(x) ≥ 4, for all x ∈(1,6), then :
Q. Let
f
be a twice differentiable function on
(
1
,
6
)
.
If
f
(
2
)
=
8
,
f
′
(
2
)
=
5
,
f
′
(
x
)
≥
1
and
f
′′
(
x
)
≥
4
,
for all
x
∈
(
1
,
6
)
,
then :
2823
199
JEE Main
JEE Main 2020
Continuity and Differentiability
Report Error
A
f
(
5
)
≤
10
3%
B
f
′
(
5
)
+
f
′′
(
5
)
≤
20
35%
C
f
(
5
)
+
f
′
(
5
)
≥
28
63%
D
f
(
5
)
+
f
′
(
5
)
≤
26
0%
Solution:
f
(
2
)
=
8
,
f
′
(
2
)
=
5
,
f
′
(
x
)
≥
1
,
f
′′
(
x
)
≥
4
,
∀
x
∈
(
1
,
6
)
f
′′
(
x
)
=
5
−
2
f
′
(
5
)
−
f
′
(
2
)
≥
4
⇒
f
′
(
5
)
≥
17
…
(1)
f
′
(
x
)
=
5
−
2
f
(
5
)
−
f
(
2
)
≥
1
⇒
f
(
5
)
≥
11
…
(2)
f
′
(
5
)
+
f
(
5
)
≥
28