f′(x)=x1+1+sinx f′(x) is not differentiable at sinx=−1
or x=2nπ−2π,n∈N Inx∈(1,∞)f(x)>0,f′(x)>0
Consider f(x)−f′(x) =lnx+0∫x1+sintdt−x1−1+sinx =(0∫x1+sintdt−1+sinx)+lnx−x1
Consider g(x)=0∫x1+sintdt−1+sinx
It can be proved that g(x)≥22−10∀x∈(0,∞)
Now there exists some α>1 such that x1−lnx≤22−10 for all x∈(α,∞) as x1−lnx is strictly decreasing function. ⇒g(x)≥x1−lnx