Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let f be a positive function. Let I1 = ∫ limits1-kk x f[ x( 1 - x)] dx, I2 = ∫ limits1-kk f[x ( 1 - x)] dx, where 2k - 1 > 0. Then (I1/I2) is
Q. Let
f
be a positive function.
Let
I
1
=
1
−
k
∫
k
x
f
[
x
(
1
−
x
)]
d
x
,
I
2
=
1
−
k
∫
k
f
[
x
(
1
−
x
)]
d
x
, where
2
k
−
1
>
0
. Then
I
2
I
1
is
1402
241
Integrals
Report Error
Answer:
0.5
Solution:
Given
f
is a function and
I
1
=
1
−
k
∫
k
x
f
[
x
(
1
−
x
)]
d
x
I
2
=
1
−
k
∫
k
f
[
x
(
1
−
x
)]
d
x
Now,
I
1
=
1
−
k
∫
k
x
f
[
x
(
1
−
x
)]
d
x
...
(
i
)
1
−
k
∫
k
(
1
−
x
)
f
[(
1
−
x
)
x
]
d
x
...
(
ii
)
[
Using Property
a
∫
b
f
(
x
)
d
x
=
a
∫
b
f
(
a
+
b
−
x
)
d
x
]
Adding (i) and (ii)
2
I
1
=
1
−
k
∫
k
f
[
x
(
1
−
x
)]
d
x
=
I
2
∴
I
2
I
1
=
2
1
=
0.5