Q.
Let f be a polynomial function which satisfies the relation
f(x)+f(y2x)+f(yx)=f(x)⋅f(y1)−y31+y6x3+2∀x∈R−{0},f(1)=1 and f(2)=9
The value of r=1∑100f(r) equals
764
133
Relations and Functions - Part 2
Report Error
Solution:
f(x)+f(y2x)+f(yx)=f(x)⋅f(y1)+2
Replacing y by x f(x)+f(x1)+f(1)=f(x)⋅f(x1)+2.....(i)
Putting x=y=1 in the given relation 3f(1)=(f(1))2+2⇒(f(1))2−3f(1)+2=0⇒f(1)=1 or 2 ∴f(1)=2
Now, from (i) ⇒f(x)+f(x1)=f(x)⋅f(x1) ⇒f(x)=1±xn f(2)=1±2n=9⇒±2n=8
Positive sign is to be taken and n=3 ∴f(x)=1+x3 r=1∑100f(r)=r=1∑100(1+r3)=100+(13+23+……+1003) =100+(1+2+……+100)2 =100+(5050)2