Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let f be a function which is continuous and differentiable for all real x. If f (2)=-4 and f prime( x ) ≥ 6 for all x ∈[2,4], then
Q. Let
f
be a function which is continuous and differentiable for all real
x
. If
f
(
2
)
=
−
4
and
f
′
(
x
)
≥
6
for all
x
∈
[
2
,
4
]
, then
894
101
Application of Derivatives
Report Error
A
f
(
4
)
<
8
B
f
(
4
)
≥
8
C
f
(
4
)
≥
12
D
f
(
4
)
<
12
Solution:
ByL.M.V.T.
f
′
(
c
)
=
4
−
2
f
(
4
)
−
f
(
2
)
=
2
f
(
4
)
+
4
But
f
′
(
x
)
≥
6∀
x
∈
[
2
,
4
]
∴
f
′
(
c
)
≥
6
⇒
2
f
(
4
)
+
2
≥
6
⇒
f
(
4
)
≥
8.