Q.
Let f be a function defined by f(x)=(x−1)2+1,(x≥1). Statement - 1 :
The set {x:f(x)=f−1(x)}={1,2} Statement - 2 :
f is a bijection and f−1(x)=1+x−1,x≥1.
2899
218
AIEEEAIEEE 2011Relations and Functions - Part 2
Report Error
Solution:
f(x)=(x−1)2+1,x≥1 f:[1,∞)→[1,∞) is a bijective function ⇒y=(x−1)2+1⇒(x−1)2=y−1 ⇒x=1±y−1⇒f−1(y)=1±y−1 ⇒f−1(x)=1+x+1{∴x≥1}
so statement-2 is correct
Now f(x)=f−1(x)⇒f(x)=x⇒(x−1)2+1=x ⇒x2−3x+2=0⇒x=1,2
so statement-1 is correct